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Abstract— The Vaisala GLD360 global lightning dataset is 

generated by a long-range network that employs both Time of 
Arrival (TOA) and Magnetic Direction Finding (MDF) 
technologies at each sensor to geo-locate individual lightning 
flashes.  The sensors, sensitive to the Very Low Frequency range 

(VLF; ~500 Hz–~50 kHz), use a waveform recognition algorithm 

to identify specific features in radio atmospherics generated by 
individual lightning discharges.  A propagation correction is 
applied to the time delay of each feature in order to recover a more 
consistent arrival time across a wide range of distances and 
propagation conditions. An attenuation model is also applied to 
the amplitude of the waveform, which is used to recover an 
estimate of peak current.  

On August 18, 2015, Vaisala released an update to the location 
algorithm that generates the GLD360 dataset. This update 
includes several enhancements that are targeted at improving the 
performance of the network. The primary changes include a more 
refined propagation model, improved sensor correlation 
heuristics, and a more robust backend infrastructure. Using 
reprocessed and pre-update production data, an analysis of the 
network performance before and after the upgrade is given. Using 
lightning data from Vaisala’s National Lightning Detection 
Network (NLDN) as a reference, quantitative validation results 
are presented that analyze the relative ground flash and cloud 
pulse detection efficiency, ground stroke location accuracy, and 
ground stroke peak current magnitude performance.  

The global extent of the GLD360 dataset makes it well suited 
to a variety of meteorological and warning applications. The utility 
of the network in these types of applications is dependent on the 
data quality in the region of interest. We apply GLD360 data, 
reprocessed with the new algorithm, to two applications. First, we 
use a peak current filter to estimate annual ground flash density 
rates, using a single year of reprocessed data. Second, we provide 
a follow-up to previous studies that analyzed GLD360’s skill as a 
lightning warning system, using the practical figures of merit of 
probability of detection and total duration in a warning state. This 
updated analysis of GLD360’s utility as a lightning warning 
system is compared against the warning performance using 
lightning data from NLDN. 

Keywords—lightning detection networks; GLD360; lightning 

climatology; lightning warning 

I. INTRODUCTION  

Long-range terrestrial lightning location systems (LLS) 

provide near real-time lightning data over continental-scale 

regions. Using receivers sensitive to the Very Low Frequency 

(VLF; 3–30 kHz) range, long-range LLS leverage efficient 

guiding in the Earth-ionosphere waveguide at these frequencies  

[Davies, 1990, p. 389]  to measure radio impulses emitted from 

large current processes in individual lightning discharges at 

large (several thousand kilometer) distances. A central processor 

(CP) combines measurements from multiple sensors to calculate 

the time and location of the causative discharge. In many cases, 

this calculation estimates the quality of the solution and 

calculates additional properties of the discharge, including peak 

current and polarity [Said et al., 2010].  

Long-range LLS usually have inferior performance across all 

relevant metrics compared to shorter-baseline networks, 

including a larger location accuracy (LA), lower flash detection 

efficiencies (DE), and, when available, less reliable peak current 

estimates [Nag et al. 2015]. The location accuracy for long-

range lightning detection systems is typically an order-of-

magnitude worse than shorter baseline networks with a higher 

sensor bandwidth.  Given perfectly coherent detection, the 

limited frequency bandwidth of long-range LLS is not a 

theoretical impediment to sub-kilometer location accuracy [Lee 

1989]. However, practical limitations, including variable 

propagation conditions, signal-to-noise ratio constraints, and 

uncorrected waveguide dispersion effects typically limit the LA 

of these systems to several kilometers. In addition, continental-

scale networks preferentially detect cloud-to-ground (CG) 

return strokes and some inter- or intra-cloud (IC) discharges 

with large peak current amplitudes. In contrast, shorter baseline 

networks with sensor bandwidth extending through the Low 

Frequency (LF; 30–300 kHz) and Medium Frequency (MF; 300 

kHz–3 MHz) range detect a larger fraction of both CG and IC 

flashes with a better spatial resolution, on the order of several 

hundred meters.  



The performance of long-range networks is an important 

consideration to the applications that use the lightning data. 

Many of the same ground-truth validation techniques applied to 

national-scale VLF/LF networks can be equally applied to 

longer-range networks (see, for example, Mallick et al. [2014b, 

2014c]). However, due to the longer baselines and more variable 

propagation conditions of the Earth-ionosphere waveguide, a 

careful examination of the spatial and temporal uniformity of 

these performance metrics is particularly important to a more 

complete evaluation of a long-range LLS. Inter-network 

comparisons between long-range LLS and higher performance 

regional LLS provide a means to evaluate the long-range LLS 

performance across wider regional and time domains. These 

comparative analyses provide relative performance metrics that 

necessarily depend on the quality of the reference network data. 

A more detailed discussion of the strengths and limitations 

between various network validation techniques is included in 

Nag et al. [2015] and references therein.  

 This paper evaluates multiple performance parameters of the 
GLD360 dataset, which is generated by a global lightning 
detection network owned and operated by Vaisala [Said et al. 
2013]. GLD360 uses a waveform recognition algorithm to 
identify specific features in radio atmospherics generated by 
individual lightning discharges and to estimate polarity.  A 
propagation correction is applied to the time delay of each 
waveform feature in order to reduce the arrival time error across 
a wide range of distances and propagation conditions. An 
attenuation model is also applied to the amplitude of the 
waveform, which is used to recover an estimate of peak current 
magnitude. The GLD360 network employs both Time of Arrival 
(TOA) and Magnetic Direction Finding (MDF) technologies at 
each sensor, which is unique among long-range LLS. GLD360 
does not classify events between CG strokes and IC pulses; all 
events are labeled CG strokes.  

 On August 18, 2015 Vaisala released an upgrade to the 
network software behind the GLD360 dataset. This paper 
presents preliminary estimates of the resulting change in 
performance by comparing pre-upgrade production against 
reprocessed GLD360 data together with reference data from the 
National Lightning Detection Network (NLDN). The 
subsequent section applies the upgraded dataset to two specific 
applications: a direct estimate of global ground flash densities, 
and using GLD360 lightning data as a thunderstorm warning 
system.  

II. OVERVIEW OF GLD360 UPDATE AND COMPARISON 

WITH NLDN 

The upgrade to the GLD360 network on August 18, 2015 

included algorithm changes to the CP. A detailed description of 

these modifications is left to future work.  The difference in 

performance due to processing changes at the CP can be 

quantified by comparing the production dataset before the 

upgrade date to data generated by reprocessed archived sensor 

data with the new algorithm. For this purpose, GLD360 sensor 

data from January 1, 2014 through the upgrade date has been 

reprocessed. In the calendar year 2014, the production GLD360 

dataset reported 822 million strokes. Over the same time period, 

the reprocessed dataset contains 1,480 million strokes, an 80% 

increase. 

In this section we use NLDN data as a reference to compare 

the performance of the production and reprocessed GLD360 

dataset over CONUS. Events from July 1 through July 31, 2015 

from both the production and reprocessed datasets are compared 

at the stroke level to NLDN Total Lightning (TL) data. 

Individual return strokes and cloud pulses are matched between 

the GLD360 (test) and NLDN (reference) datasets if the location 

and time of an event from each are within 50 km and 150 

microseconds, respectively.  

Fig. 1 shows the total flash density measured by NLDN and 

GLD360 over the one month analysis period. Note that the 

density values in Fig. 1 are scaled up to annual values, even 

though the data are from one month (July); these are not true 

annual flash densities. Strokes from each network were matched 

over the latitude range [30–48] degrees north and longitude 

range [125–75] degrees west, shown by the inner box in each 

plot. Over this analysis area, both networks observe similar 

spatial patterns of flash density. Given the install base of sensors 

over CONUS and Canada, NLDN’s coverage extends ~250 km 

from the coastal boundary and southern border with Mexico 

[Nag et al., 2014]. However, the expected falloff in NLDN’s DE 

with decreasing latitude into Mexico is clearly evident by 

comparing NLDN’s  total flash density with values reported  by 

 

(a) NLDN Total Flash Density 

 
(b) GLD360 Total Flash Density 

 
Fig. 1. Total flash density measured by NLDN (a) and GLD360 (b) for July 

1 – July 31, 2015, given in fl-km2-yr1. Flash counts are summed in 0.5o x 

0.5o bins and scaled to correspond to a flash density per year assuming the 

same average rate observed in July.  The inner box indicates  the comparison 

window used to derive the validation results presented in Section II.  

 



the reprocessed GLD360 dataset. In the interior of CONUS, the 

total flash counts between the two networks generally track each 

other, usually within a factor of 2.  

Fig. 2 evaluates the dependence of the relative DE on peak 

current and time of day. As shown in Fig. 2a, in both the 

production and reprocessed datasets, the ground flash DE 

decreases with decreasing peak current magnitude. However, 

the flash DE of the reprocessed dataset is higher compared to the 

production dataset for every peak current range. For large 

negative CG flashes, the reprocessed GLD360 dataset detects 

nearly every NLDN-reported CG flash; the relative CG flash DE 

is over 99% for negative peak current magnitudes above 45 kA, 

and above 90% for negative flashes larger than 17.5 kA. In 

contrast, the production dataset CG flash DE saturates at ~88% 

for large negative events. The increase in DE is larger for 

positive flashes. In the reprocessed dataset, the DE saturates at  

(a) 

 
(b) 

 
(c) 

 
 

Fig. 2. Relative CG flash DE (a,b) and relative IC pulse DE (c) versus 
NLDN peak current (a) and local time (b, c). Relative DE of the pre-upgrade 

production dataset (blue) and the reprocessed dataset (green) are shown 

together with the number of NLDN flash or pulse counts (pink) for each 
peak current or local time range bin. Peak current bin widths are 2.5 kA; 

local time bin widths are 30 minutes. 

~97% for large events, compared to ~60% in the production 

dataset. Integrated over all peak current bins, the total CG flash 

DE increased from 59% to 81%.  

Figs. 2b and c show the diurnal dependence of the relative 

CG flash DE and cloud pulse DE with respect to local time, 

which is calculated using the time and longitude of the reference 

event. In both cases, the relative DE of the reprocessed dataset 

exhibits significantly less diurnal variation compared to the 

production dataset. The overall CG flash DE for the reprocessed 

dataset holds near 85% for the nighttime and early and late 

daytime hours. During the peak activity in the late local 

afternoon hours, the relative CG flash DE dips to 76%. This dip 

is correlated with the increase in total flash counts, rather than 

with a change in day/night ionospheric propagation profiles. 

Hence, the dip is likely caused by count saturation effects at the 

sensor and CP and not due to the diurnal dependence of 

propagation losses in the Earth-ionosphere waveguide. In 

contrast, the production relative CG flash DE varies between 

50% and 70%, and is at a minimum during local midnight.  

The reprocessed relative IC pulse DE shows a similar dip 

during the peak late afternoon thunderstorm hours. The 

reprocessed DE also exhibits a slight diurnal dependence, with 

a small increase in DE during the local nighttime hours. On 

average, nighttime ionospheric losses are lower, so the detection 

of weaker cloud pulses is expected to increase slightly for events 

detected over nighttime propagation paths. In contrast, the 

production dataset shows a sharp decrease in relative cloud pulse 

DE during the nighttime paths, as with the relative CG flash DE. 

Since the production and reprocessed datasets are derived using 

the same sensor data, this dip is not due to an underlying sensor 

detection issue. The relatively poor nighttime detection of IC 

pulses and, to a lesser extent, CG flashes in the old algorithm 

may instead be due to an oversimplified propagation correction 

algorithm for nighttime paths that prevented a high yield during 

the sensor correlation and quality control steps in the location 

algorithm.  

Overall, the reprocessed dataset detected 44% of the cloud 

pulses reported by NLDN, compared to 21% detected by the 

production dataset. While the relative cloud pulse DE represents 

a conservative lower bound to the relative cloud flash DE, the 

<50% cloud pulse DE, combined with the similar total flash 

counts over the analysis window seen in Fig. 1, suggest GLD360 

is uniquely detecting a significant fraction of flashes. A more 

complete characterization of these uniquely detected flashes is 

left to future work. 

The limited spatial resolution offered by long-range 

lightning detection networks typically limit their use for energy 

applications [Borghetti et al. 2006]. Thus, peak current estimates 

have limited practical use in such networks. However, in the 

next section we use peak current as a crude averaged proxy for 

source type classification. To justify this approach, in this 

section we evaluate the relative peak current magnitude error 

using NLDN ground strokes as a reference. Fig. 3 shows the 

geometric mean of the peak current magnitude error versus 

NLDN peak current and local time. In both the  production  and  



reprocessed datasets, the fractional error decreases with 

increasing amplitude. The peak current error of the reprocessed 

dataset is roughly half as large as the production dataset. This 

reduction by approximately a factor of two in the relative error 

is also evident in the plot against local time. In the reprocessed 

dataset, the relative error is ~10–12% during the nighttime 

hours, rises to 20% just before sunrise, and then slowly rises 

from ~10 to ~25% between sunrise and local noon, before 

falling back to ~10% at sunset. The symmetric pattern in the 

daytime peak current error profile follows the elevation angle of 

the sun at the solution location. The new propagation algorithm 

does not include additional daytime propagation correction 

factors that account for the sun elevation angle. This plot 

suggests that introducing additional correction factors that 

account for sun elevation could reduce the daytime peak current 

error by over a factor of two. The larger peak current error at 

sunrise compared to sunset suggests the day/night propagation 

correction is less robust during the sunrise ionospheric 

transition. A detailed exploration of this asymmetry would need 

to account for mode coupling effects between the daytime and 

nighttime propagation conditions and is left to future work.  

Fig. 4 shows the histogram and cumulative distribution 

function (CDF) of the relative location error for both the 

production and reprocessed datasets. Adjustments to the 

waveform identification scheme, improvements to the 

propagation correction  parameters, and  other modifications  to 

 
 
Fig. 4. Histogram and cumulative distribution function of the relative 

ground stroke location error between NLDN CG strokes and matched events 
from the production (blue) and reprocessed (green) datasets. 
 

the location algorithm improved the median location accuracy 

from 2.4 km to 1.8 km, and the 90th percentile location error 

from 12.9 km to 6.4 km. The reduction in large-error outliers 

should benefit the second class of applications considered 

below, lightning warning systems.  

This inter-network comparison does not provide an absolute 

reference for GLD360’s performance, since the results are 

dependent on the accuracy and completeness of NLDN’s 

lightning data. NLDN’s CG flash DE, stroke LA, and peak 

current error have been well characterized and validated in the 

literature. Using rocket-triggered lightning data at a facility in 

Camp Blanding, Florida as ground truth, Mallick et al. [2014a] 

validate multiple NLDN CG flash performance parameters. In 

the most recent year evaluated (2013), they report the LA to be 

better than 200 m, a CG flash DE >95%, and a peak current 

magnitude error of 15%. Given the high ground flash DE and 

order-of-magnitude better LA, it is assumed in this analysis that 

the NLDN CG flash data is ground truth (100% flash DE, exact 

return stroke location). In contrast, we treat the relative cloud 

pulse DE as a qualitative result. NLDN’s cloud flash DE is lower 

than the CG flash DE (50–60% [Murphy and Nag, 2015]), and 

there is no means to provide an absolute cloud pulse reference. 

In addition, the peak current error of the reprocessed dataset is 

of the same order of magnitude as the absolute peak current error 

for NLDN subsequent strokes, so an additional error term is 

needed to properly characterize the results shown in Fig. 3. 

III. APPLICATIONS 

A. Ground Flash Density 

The first application we consider is an estimate of annual 

CG flash density, a parameter of particular importance in 

lightning protection and electric power applications. We use the 

reprocessed GLD360 data from the calendar year 2014, and we 

preferentially isolate the CG flashes by applying a peak current-

based filter.  

As a reference, Fig. 5a shows the total flash density from 

Fig. 2a of Cecil et al. [2014a], redrawn here using 

HRFC_COM_FR grid data from Cecil et al. [2014b] with the 

same  color  scale as  the  GLD360-derived  flash  density  plots  

(a) 

 
 

(b) 

 
 
Fig. 3. Relative peak current magnitude error for CG strokes versus NLDN 

ground stroke peak current (a) and local time (b). Peak current error of the 

production (blue) and reprocessed (green) datasets are shown together with the 
number of NLDN ground strokes in each peak current or local time bin (pink). 

Peak current bin widths are 2.5 kA; local time bin widths are 30 minutes. 
 



(a) LIS/OTD Total Flash Density 

 
   

(b) GLD Total Flash Density 

 
 

(c) LIS/OTD to GLD360 Total Flash Ratio  

 
 

Fig. 5. (a) LIS/OTD total flash density (fl-km2-yr1) composite on a 0.5
o
 x 0.5

o
 

grid.  (b) GLD360-determined total flash density using reprocessed 2014 data, 

shown with the same color scale and grid size. (c) Ratio between flash densities 

shown in (a) and (b), shown for pixels where the GLD360-determined total 

flash density is greater than 0.25 fl-km2-yr1. 
 

 

shown in Fig. 5b. This total flash density plot is generated using 

15 years of spaceborne optical observations from the Optical 

Transient Detector (OTD) and Lightning Imaging Sensor (LIS), 

and represents the current best estimate of the absolute annual 

total flash density. Fig. 5b shows the reprocessed total flash 

density reported by GLD360, where no peak current-based 

filtering has been applied. The GLD360 flash density is derived 

by grouping strokes into flashes using a 1-second, 15-km 

window. The flash density is calculated on a 0.5o 

latitude/longitude grid, where the total counts in each bin are 

normalized by the latitude-dependent area of the pixel. 

Since the color scale saturates at 32 fl-km2-yr1, Figs. 5a 

and 5b de-emphasize the difference between the LIS/OTD and 

GLD360 total flash density estimates in areas with very high 

annual flash rates. For example, Cecil et al [2014a] note a 

maximum annual flash rate of 160 fl-km2-yr1 in Eastern 

Congo, which is a factor of 5 larger than the highest color scale 

value in Figs. 5a and 5b. Fig. 5c plots the ratio between the flash 

densities shown in Figs. 5a and 5b. The ratio color scale 

saturates at 5; any ratio higher than 5 is plotted in red.  

Over much of the Americas, Europe, Southeast Asia, and 

Australia, the total flash density ratio is at or below 2. This 

relative equivalence in annual total flash densities suggests that 

GLD360’s total flash DE is on the order of 50% or higher over 

these geographic regions. In some of the oceanic pixels in 

Southeast Asia, GLD360’s flash density is over 50% larger than 

the 15-year LIS/OTD lightning climatology (where the ratio is 

less than 2/3). This plot also highlights areas where the DE is 

much lower. GLD360’s decreasing DE over Africa, Argentina, 

and eastern Brazil are clearly evident in this plot. Curiously, the 

ratio contains a local peak along a trace just south of the 

Himalayan mountain region, a pattern that warrants further 

study. 

Many of the high spatial frequency artifacts in Fig. 5c are 

undoubtedly due to single-year weather patterns. In particular, 

there are many 0.5o pixels in Canada and Siberia where the ratio 

is 3 or higher in close proximity to many lower ratio regions. 

These high-latitude areas are characterized both by low absolute 

flash counts and smaller pixel sizes by area. Hence, we expect 

deviations in individual weather patterns from 2014 compared 

to longer-term averages to lead to rapid spatial changes of the 

ratio.  

To estimate the annual ground flash density, the flash 

dataset shown in Fig. 5b is passed through a peak current 

magnitude filter, which removes all flashes with a peak current 

magnitude less than Imin. In the stroke-to-flash grouping 

algorithm used in this study, the largest amplitude constituent 

stroke determines the peak current of the overall flash. The 

threshold Imin is chosen such that the contribution from cloud 

flashes is insignificant compared to overall CG flash counts. 

Using NLDN data, Nag et al. [2015] found a negligible 

contribution of effective peak currents from IC pulses above 30 

kA for both positive and negative events; above this threshold, 

the overall counts are dominated by CG activity. Here, we show 

the results with threshold Imin = 30 kA and 40 kA. After either 

threshold is applied, the flash density is recalculated and then 

scaled using the CG flash peak current distribution based on the 

log-normal fit to tower measurements shown in Berger [1975]. 

According to this log-normal fit, truncating the GLD360 flash 

data using Imin = 30 kA and 40 kA removes 50% and 70% of the 

negative ground flash population, respectively. Thus, for these 

two thresholds, we scale the ground flash density estimate by 

1/0.5 and 1/0.3, respectively. 

Figs. 6a and b show the resulting CG flash density estimates 

using the 30 kA and 40 kA thresholds, respectively. These 

estimates of CG flash density include several assumptions with 

varying degrees of uncertainty about the underlying peak current 

distributions of natural lightning and the network performance. 

Firstly, the CG flash peak current distribution is assumed to be 

the same for all regions across the globe and equal to the 

negative CG flash distribution given in Berger et al [1975]. We 

also assume the CG flash DE is geographically and temporally 

constant,  and we  apply no  DE adjustment  above Imin  (i.e., we 



(a) GLD360 Scaled CG Flash Density, 30 kA Cutoff 

  

(b) GLD360 Scaled CG Flash Density, 40 kA Cutoff 

  

(c) CG Flash Density Percent Change Between 30 and 40 kA 

Cutoff Thresholds 

  
Fig. 6. (a,b) Scaled GLD360-determined CG flash density estimate (fl-km2-

yr1) using a 30 kA cutoff (a) and a 40 kA cutoff (b). (c) Percent change of 

GLD360 ground flash density estimate using the 40 kA cutoff compared to 
a 30 kA cutoff. Pixels where the 30 kA ground flash density is less than 

0.125 fl-km2-yr1 are not shown. All thematic map plots shown with 0.5
o
 x 

0.5
o
 resolution.  

 

assume 100% CG Flash DE). In addition, the GLD360 peak 

current estimates are assumed to be accurate and temporally and 

geographically stable; no diurnal or spatially-dependent peak 

current correction factor is applied before the dataset is filtered 

by Imin.  

The sensitivity of the CG flash density estimate to Imin 

reflects the combination of all of the error terms corresponding 

to each of these underlying assumptions.  Fig. 6c shows the 

percent change in CG flash density estimate of the 40 kA 

threshold compared to the 30 kA threshold. For the vast majority 

of pixels, the CG flash density estimate varies by less than 30%. 

Regions where the 40 kA threshold yields a density estimate 

between 10–30% less than the 30 kA threshold are largely 

restricted to land masses; the 10–30% higher estimate pixels are 

dominated by oceanic regions.  

The year-long flash density measurement averages over the 

diurnal variations of peak current error shown in Fig. 3, and 

anyway, peak current errors are at most about 20%. Regional 

differences are therefore likely dominated by a combination of 

variations in both DE and the natural CG flash peak current 

distribution. As mentioned above, we have not applied any DE-

based correction factors, effectively assuming the CG flash DE 

is 100% above Imin. In reality, the CG flash DE is lower, and so 

we are missing a DE correction factor DE, where DE > 1. If we 

assume that the CG flash DE is a monotonically increasing 

function with peak current magnitude, as observed in Fig. 2a, 

applying a higher Imin to the CG density calculation will decrease 

DE proportionally more in regions with lower DE compared to 

regions with higher DE. Hence areas with lower overall CG 

flash DE would show a relative increase in the CG flash density 

estimate for higher values of Imin. This effect is convolved with 

CG density estimate errors due to variations and uncertainty in 

the underlying CG flash peak current distribution. If the 

distribution is shifted to higher peak current magnitudes 

compared to the assumed distribution, then the CG flash density 

estimate should be scaled by a factor IP, where IP < 1. Given a 

log-normal distribution, this additional correction factor 

decreases with increasing values of Imin. Hence, if the underlying 

CG peak current distribution is skewed higher, then increasing 

Imin will increase the overestimate of the CG flash density. Thus, 

regions in Fig. 6c with a higher relative estimate could also 

correspond to regions with a peak current magnitude distribution 

skewed to higher values. 

We suggest that the variation in the CG flash density 

estimate between the two peak current thresholds shown in Fig. 

6c is dominated by variation in the natural CG flash peak current 

distribution. The transition between the light blue (10–30% 

lower estimate), green (within 10% difference), and yellow (10–

30% higher estimate) generally follow terrain patterns with a 

high spatial frequency, instead of slow transitions in the interior 

of more sparsely covered oceanic regions. The apparent trend to 

higher peak current magnitude distribution in the oceans, in 

particular, is consistent with past studies that show a skew to 

higher effective peak currents reported by ground-based LLS 

over the oceanic regions (see, for example, Said et al. [2013] and 

references therein). 

B. Warning Analysis 

In this section we evaluate the effectiveness of the 

reprocessed GLD360 dataset as an operational CG lightning 

warning system. A measure of the skill of a lightning warning 

system typically consists of three metrics: the probability that a 

storm will be detected with sufficient advanced warning to take 

precautionary actions, the false alarm ratio, and the total time 

spent in a warning state. The first metric addresses safety. If a 

storm that eventually produces a CG strike in an Area of 

Concern (AOC) is detected before the first CG strike occurs, 

there is an opportunity to protect ground assets and personnel. 

The latter two  metrics are measures of efficiency. The longer a 

warning system is in an alert state, and the more often it is 

unnecessarily in an alert state, the more cost is accrued due to 

stalled ground operations. Several past studies have analyzed the 

effectiveness of LLS as CG warning systems [Murphy and 

Holle, 2006; Holle and Demetriades 2010; Holle et al 2014]. 

This analysis uses the same methodological approach as these 



earlier studies to evaluate the relative warning skill using the 

reprocessed GLD360 dataset in comparison to the higher-

resolution NLDN dataset.  

Using the methodology detailed in Holle et al. [2014], we 

evaluate the probability of detecting the first CG stroke of a 

storm in an AOC with at least a two minute lead time (POD2), 

and the percent time spent in a warning state. NLDN CG flash 

data is used as ground truth for the existence of a CG stroke in 

the AOC. Lightning activity over a larger warning area (WA) 

that encompasses the AOC triggers an alert state. The alert state 

remains active until 15 minutes past the last lightning event of a 

storm in the WA. The results below separately evaluate NLDN 

TL and GLD360 as the data source for these WA triggers. 

This study includes 11 airports as hypothetical warning areas 
throughout the Midwest and South, and analyzes data from June 
1, 2014 through August 31, 2014, a duration of 132,480 minutes. 
The airports included are Atlanta, Charlotte, Dallas-Fort Worth, 
Houston, Kansas City, Nashville, New Orleans, Oklahoma City, 
Orlando, San Antonio, and St Louis. The AOC is defined as a 
circle with a 2.0 km radius. The WA is defined as a circle with 
the same center as the AOC. In order to establish a trend and 
provide greater insight on the relative performance of each 
network, we evaluate three separate WA radii:  5, 7.5, and 10 
km. 

Fig. 7a shows the total warning duration for each network 
(NLDN versus reprocessed GLD360), for each of the 11 airports 
for the 10 km WA radius. Airports 10 (Orlando) and 11 (New 
Orleans) have the highest total warning duration. Fig. 7b shows 
the average percent time spent in a warning state per airport as a 
function of WA radius. Given the relatively large warning 
duration in Orlando and New Orleans, the average percent time  

(a) Total Time in Warning State 

 

(b) Avg Percent Time in Warning State 

 
Fig. 7. (a) Total warning duration (in minutes) for each of the 11 airports in 
the study using a 10 km WA radius. (b) Average percent time spent in a 
warning state per airport versus WA radius. 

is disproportionately influenced by these two locations. For each 
WA radius, the average time of each network is within 0.1%, or 
~132 minutes. 

Fig. 8a quantifies the POD2 for each airport using the 10 
km WA radius, and shows the average POD2 across all airports 
as a function of WA radius. As seen by the linear regression lines 
in Fig. 8b, the POD2 for GLD360 is ~5% lower for each radius. 
Hence, to achieve the same POD2 with the GLD360 dataset, a 
larger WA radius should be used.  

IV. SUMMARY AND CONCLUSIONS 

This paper provides an initial analysis of the performance 

of the GLD360 network after the software upgrade released on 

August 18th, 2015. Using one month of NLDN data as a 

reference, multiple performance metrics were evaluated using 

both production and reprocessed GLD360 data. The relative CG 

flash DE increased from ~55–75% to ~75–85% depending on 

the local time of day, where the low end is likely caused by count 

saturation effects during peak thunderstorm activity rather than 

network sensitivity limitations. The relative IC pulse DE 

increased from ~10–30% to ~40–50%. Of the 80% overall 

increase in GLD360 event counts as a result of the algorithm 

upgrade, there was roughly a 30% increase in CG flashes (and 

thus, perhaps ~50% increase in CG strokes). There was also a 

doubling, approximately, in IC pulses; these comprise the 

remainder of the overall increase in counts (taking into account 

the naturally lower DE of IC pulses). The GM of the relative 

peak current magnitude error is reduced by a factor of 2, exhibits 

a diurnal variation, and asymptotically approaches 10% for the 

largest peak current magnitudes. The median location accuracy 

decreased from 2.4 km to 1.8 km, and the 90th percentile 

decreased from 12.9 km to 6.4 km.  

 

(a) 

 

(b) 

 
 

Fig. 8. (a) POD2 for the 10 km WA radius. (b) Average POD2 versus WA 
radius. 



Two applications were considered using GLD360 data 

reprocessed with the new location algorithm. By clustering 

events into flashes and applying a suitably high peak current 

filter, an annual global ground flash density estimate was made 

using data from Jan 1, 2014–Dec 31, 2014. Finally, the lightning 

warning skill of reprocessed GLD360 data was compared 

against using NLDN data. For a given warning radius, the total 

warning duration across both networks was roughly equivalent, 

but the probability of detection with at least 2 minutes lead time 

was found to be ~5% higher using NLDN data. 
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